• 文献标题:   Interfacial Engineering and a Low-Crystalline Strategy for High-Performance Supercapacitor Negative Electrodes: Fe(2)P(2)O(7 )Nanoplates Anchored on N/P Co-doped Graphene Nanotubes
  • 文献类型:   Article
  • 作  者:   LI HY, LIU T, HE YN, SONG JN, MENG AL, SUN CL, HU MM, WANG L, LI GC, ZHANG ZH, LIU Y, ZHAO J, LI ZJ
  • 作者关键词:   fe2p2o7 nanoplate, n/pdoped graphene nanotube, low crystalline, interfacial engineering, rate capability, long cycle
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   9
  • DOI:   10.1021/acsami.1c17356 EA JAN 2022
  • 出版年:   2022

▎ 摘  要

Developing novel hybrid negative electrode materials with high specific capacity, rate capacitance, and long-term cycle stability is a key factor for pushing large-scale application of supercapacitors. However, construction of robust interfaces and low-crystalline active materials plays a crucial role in realizing the target. In this paper, a one-step phosphorization approach was employed to make low-crystalline Fe2P2O7 nanoplates closely bonded to N/P-co-doped graphene nanotubes (N/P-GNTs@b-Fe2P2O7) through interfacial chemical bonding. The N and P heteroatoms as substitutions for C in GNT skeletons can introduce rich electronic centers, which induces Fe2P2O7 to fix the surface of N/P-GNTs through Fe-N and Fe-P bonds as confirmed by the characterizations. Moreover, the lowcrystalline active materials own a disordered internal structure and numerous defects, which not only endows with excellent conductivity but also provides many active sites for redox reactions. Benefiting from the synergistic effects, the prepared N/P-GNTs@b-Fe2P2O7 can not only deliver a high capacity of 257 mA h g(-1) (927 F g(-1)) at 1 A g(-1) but also present an excellent rate capability of 184 mA h g(-1) (665 F g(-1)) at 50 A g(-1) and outstanding cycle stability (similar to 90.6% capacity retention over 40,000 cycles). Furthermore, an asymmetric supercapacitor was assembled using the obtained N/P-GNTs@b-Fe2P2O7 as electrode materials, which can present the energy density as high as 83.3 W h kg(-1) at 791 W kg(-1) and long-term durability. Therefore, this strategy not only offers an effective pathway for achieving high-performance negative electrode materials but also lays a foundation for further industrialization.