• 文献标题:   Onion-like crystalline WS2 nanoparticles anchored on graphene sheets as high-performance anode materials for lithium-ion batteries
  • 文献类型:   Article
  • 作  者:   KIM I, PARK SW, KIM DW
  • 作者关键词:   electrical explosion of wire proces, tungsten disulfide, nanocomposite, carbon coating, lithiumion battery
  • 出版物名称:   CHEMICAL ENGINEERING JOURNAL
  • ISSN:   1385-8947 EI 1873-3212
  • 通讯作者地址:   Korea Univ
  • 被引频次:   20
  • DOI:   10.1016/j.cej.2019.122033
  • 出版年:   2019

▎ 摘  要

In this study, onion-like crystalline WS2 nanoparticles uniformly anchored on graphene sheets (WS2@Gs) were prepared via ball milling using WO3 nanoparticles and graphene and subsequent sulfidation. They were then employed as high-performance anode materials for Li-ion batteries (LIBs). The ball-milling process facilitated uniform anchoring of WO3 nanoparticles with a diameter of similar to 15 nm on graphene nanosheets without aggregation, and the subsequent sulfidation caused phase transition of the WO3 nanoparticles to WS2 nanoparticles with an onion-like crystal lattice structure. As anode materials for LIB, the uniquely structured WS2@Gs nanocomposites exhibited excellent Li-ions storage performance, with a high reversible capacity of 587.1 mA h g(-1) at a current density of 200 mA g(-1). To enhance the cyclic stability of WS2@Gs, the C-coating method was employed by simply adding glucose during ball milling. Even at a high current density of 1000 mA g(-1), the C-coated WS2@Gs (C@WS2@Gs) electrode exhibited a remarkably high reversible capacity of 371.9 mA h g(-1) and appreciable cycling stability, with a high capacity retention of 62% without any drastic capacity fading after 500 cycles.