▎ 摘 要
A high hydrogen storage capacity for palladium decorated nitrogen-doped hydrogen exfoliated graphene nanocomposite is demonstrated under moderate temperature and pressure conditions. The nitrogen doping of hydrogen exfoliated graphene is done by nitrogen plasma treatment, and palladium nanoparticles are decorated over nitrogen-doped graphene by a modified polyol reduction technique. An increase of 66% is achieved by nitrogen doping in the hydrogen uptake capacity of hydrogen exfoliated graphene at room temperature and 2 MPa pressure. A further enhancement by 124% is attained in the hydrogen uptake capacity by palladium nanoparticle (Pd NP) decoration over nitrogen-doped graphene. The high dispersion of Pd NP over nitrogen-doped graphene sheets and strengthened interaction between the nitrogen-doped graphene sheets and Pd NP catalyze the dissociation of hydrogen molecules and subsequent migration of hydrogen atoms on the doped graphene sheets. The results of a systematic study on graphene, nitrogen-doped graphene, and palladium decorated nitrogen-doped graphene nanocomposites are discussed. A nexus between the catalyst support and catalyst particles is believed to yield the high hydrogen uptake capacities obtained.