• 文献标题:   Construction of High-Performance Amperometric Acetaminophen Sensors Using Zn/ZnO-Decorated Reduced Graphene Oxide Surfaces
  • 文献类型:   Article
  • 作  者:   OZCAN M, BASAK A, UZUNOGLU A
  • 作者关键词:   graphene, sensor, nanocluster
  • 出版物名称:   ECS JOURNAL OF SOLID STATE SCIENCE TECHNOLOGY
  • ISSN:   2162-8769 EI 2162-8777
  • 通讯作者地址:   Necmettin Erbakan Univ
  • 被引频次:   2
  • DOI:   10.1149/2162-8777/ab951b
  • 出版年:   2020

▎ 摘  要

Sensitive and selective monitoring of acetaminophen (APAP), which is small but an important molecule used to relieve pain and inflammation, is of great importance in pharmacy. This study reports the development of zinc (Zn)/zinc oxide (ZnO)/reduced graphene oxide (rGO)-based electrochemical APAP sensors with a high sensitivity in a wide linear range. The Zn/ZnO/rGO nanohybrids were synthesized using a facile chemical precipitation method. The Zn and ZnO nanoparticles were anchored on the surface of rGO simultaneously. The XRD and TEM results indicated the presence of Zn and ZnO nanoparticles on the rGO surface, which was also confirmed by XPS and TGA analyses. The electrochemical performance of the sensors was investigated using cyclic voltammetry (CV) and chronoamperometry (CA) methods. The electrochemical performance results showed that the sensors had a high sensitivity of 166.5 6 mu A.mM(-1).cm(-2) in the linear range between 0.05 to 2 mM, which is considerably wide compared to the literature. Overall, the Zn/ZnO/rGO nanohybrids displayed a great promise to be employed in the development of electrochemical APAP sensors due to their a high sensitivity, wide working window, excellent fabrication reproducibility, good storage stability, selectivity, and real sample analysis results. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.