• 文献标题:   Humic acid alleviates the ecotoxicity of graphene-family materials on the freshwater microalgae Scenedesmus obliquus
  • 文献类型:   Article
  • 作  者:   ZHANG Y, MENG TT, GUO X, YANG RX, SI XH, ZHOU JT
  • 作者关键词:   graphenefamily materials cfms, humic acid ha, surface envelopment, physical damage, oxidative stres, hydroxyl radical oh ocenter dot
  • 出版物名称:   CHEMOSPHERE
  • ISSN:   0045-6535 EI 1879-1298
  • 通讯作者地址:   Dalian Univ Technol
  • 被引频次:   10
  • DOI:   10.1016/j.chemosphere.2018.01.051
  • 出版年:   2018

▎ 摘  要

The extensive application of graphene-family materials (GFMs) has increased its potential risk to aquatic organisms. However, the influence of humic acid (HA) on the biotoxicity of GFMs has not clarified. Here, we conduct a study on the toxicity of four GFMs, i.e. graphene (G), graphene oxide (GO), carboxyl modified graphene (G-COOH) and amine-modified graphene (G-NH2), with or without HA, using Scenedesmus obliquus (S. obliquus) as model organism. Our results showed that the four GFMs induced significant inhibition on cell growth and Chlorophyll-a (Chl-a) synthesis, loss of cell viability and membrane integrity as well as mitochondria membrane potential (MMP), where G exhibited the highest toxicity with median effect concentration (EC50) of 8.2 mg L-1, and G-NH2 exhibited the lowest toxicity with EC50 of 84.0 mg L-1. Meanwhile, HA mitigated the toxicity of GFMs in the order of G-NH2 > G-COOH > GO > G for the most of endpoints. Furthermore, three possible mechanisms of the HA alleviation on toxicity were speculated as: (1) reduce the contact of GFMs with algae cells through regulating the structures and surface negative charges of GFMs; (2) mitigate physical penetration and damage through decreasing the deposition of GFMs on cells by interacting with HA; (3) react as an antioxidant with intracellular reactive oxygen species (ROS) and extracellular hydroxyl radical ((OH)-O-center dot). This work provides useful information for the environmental toxicity of GFMs and the possible antidotal mechanisms in the presence of HA, which could aid to avoiding the overestimation of potential risk of GFMs in natural aquatic environment. (C) 2018 Elsevier Ltd. All rights reserved.