• 文献标题:   Opening of Band Gap of Graphene with High Electronic Mobility by Codoping BN Pairs
  • 文献类型:   Article
  • 作  者:   REN XY, XIA S, ZHANG ZG, MENG X, YU HM, WU Q, ZHANG WY, LI AW, YANG H
  • 作者关键词:   firstprinciple calculation, doping, optoelectronic property, mobility
  • 出版物名称:   CHEMICAL RESEARCH IN CHINESE UNIVERSITIES
  • ISSN:   1005-9040 EI 2210-3171
  • 通讯作者地址:   Jilin Univ
  • 被引频次:   0
  • DOI:   10.1007/s40242-019-9151-0 EA OCT 2019
  • 出版年:   2019

▎ 摘  要

Two-dimensional(2D) materials with a high density and low power consumption have become the most popular candidates for next-generation semiconductor electronic devices. As a prototype 2D material, graphene has attracted much attention owing to its stability and ultrahigh mobility. However, zero band gap of graphene leads to very low on-off ratios and thus limits its applications in electronic devices, such as transistors. Although some new 2D materials and doped graphene have nonzero band gaps, the electronic mobility is sacrificed. In this study, to open the band gap of graphene with high electronic mobility, the structure and property of BN-doped graphene were evaluated using first-principles calculations. The formation energies indicate that the six-membered BN rings doped graphene has the most favorable configuration. The band structures show that the band gaps can be opened by such type of doping. Also, the Dirac-cone-like band dispersion of graphene is mostly inhibited, ensuring high electronic mobility. Therefore, codoping BN into graphene might provide 2D materials with nonzero band gaps and high electronic mobility.