▎ 摘 要
Graphene is efficient to provide ultralow friction after the formation of an incommensurate interface but is limited to dry contact conditions and specific lattice structures. In this Letter, a new strategy is proposed to achieve the superlubricity of graphene through the creation of a sliding interface between graphene and a highly hydrophobic surface of self-assembled fluoroalkyl monolayers (SAFMs) in water. A superlow friction coefficient of mu = 0.0003 was obtained, demonstrating the extremely low shear stress between graphene and hydrophobic SAFMs in water. Molecular dynamics (MD) simulation shows that a nanometer-thick water layer is intercalated between graphene and hydrophobic SAFMs, and the weak interactions between water molecules and graphene provide a small energy barrier for water molecules sliding on graphene, which contributes to superlubricity. This finding reveals how to form a superlubricity interface by water intercalation, which has implications for minimizing the friction of layered materials and hydrophobic surfaces in water.