▎ 摘 要
Flow-induced power generation using nanomaterials, for example, graphene-water interface, has become an attractive energy harvesting mechanism. The effect of heteroatom doping of graphene on flow-induced electricity is investigated by the authors. Nitrogen-doped graphene is shown to generate 1.5 times higher power compared with pristine graphene due to surface charges and increase in effective interfacial area. Thus, doping-induced surface tuning of graphene enhances output performance. The flow-induced power generation using doped-graphene allows relaxing the material selection constraints in the triboelectric series.