• 文献标题:   Highly efficient removal of methylene blue via hollow graphene-based magnesium silicate
  • 文献类型:   Article
  • 作  者:   QUE AZ, ZHU TY, ZHENG YY
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS SCIENCE
  • ISSN:   0022-2461 EI 1573-4803
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1007/s10853-021-06299-x EA JUL 2021
  • 出版年:   2021

▎ 摘  要

Methylene blue (MB) has been a severe threat to the ecological environment and organismal health, and synthesizing effective adsorbents for MB adsorption becomes an urgent demand for environmental protection. Magnesium silicate (MgSi) has proven to be an efficient adsorbent for MB removal. A hollow bubble-wrap-like reduced graphene oxide/magnesium silicate (HG@MS) composite with high efficiency for MB removal was synthesized by template and hydrothermal method. Microsphere polystyrene was used as the template for fabricating bubble-wrap-like graphene oxide, while magnesium silicate is in situ growth on the surface of reduced graphene oxide. After removing the PS template, the hollow bubble-wrap-like HG@MS adsorbent was made, which was assigned to a large surface area (570 cm(2)/g). Such a high surface area provides abundant adsorption sites for MB, which resulted in the maximum adsorption capacity of 595.2 mg/g. Meanwhile, the adsorption of MB on the adsorbent follows the pseudo-second-order kinetic model and the Langmuir isothermal model. The desorption results reflected that HG@MS remains 86% adsorption capacities for 5 recycles, which confirms HG@MS is recyclable.