• 文献标题:   A High Energy and Power Li-Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode
  • 文献类型:   Article
  • 作  者:   WANG HW, GUAN C, WANG XF, FAN HJ
  • 作者关键词:  
  • 出版物名称:   SMALL
  • ISSN:   1613-6810 EI 1613-6829
  • 通讯作者地址:   Tongji Univ
  • 被引频次:   163
  • DOI:   10.1002/smll.201402620
  • 出版年:   2015

▎ 摘  要

A novel hybrid Li-ion capacitor (LIC) with high energy and power densities is constructed by combining an electrochemical double layer capacitor type cathode (graphene hydrogels) with a Li-ion battery type anode (TiO2 nanobelt arrays). The high power source is provided by the graphene hydrogel cathode, which has a 3D porous network structure and high electrical conductivity, and the counter anode is made of free-standing TiO2 nanobelt arrays (NBA) grown directly on Ti foil without any ancillary materials. Such a subtle designed hybrid Li-ion capacitor allows rapid electron and ion transport in the non-aqueous electrolyte. Within a voltage range of 0.0-3.8 V, a high energy of 82 Wh kg(-1) is achieved at a power density of 570 W kg(-1). Even at an 8.4 s charge/discharge rate, an energy density as high as 21 Wh kg(-1) can be retained. These results demonstrate that the TiO2 NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li-ion batteries, which makes it a promising electrochemical power source.