• 文献标题:   Size effect in single layer graphene sheets and transition from molecular mechanics to continuum theory
  • 文献类型:   Article
  • 作  者:   PELLICIARI M, PASCA DP, ALOISIO A, TARANTINO AM
  • 作者关键词:   graphene, size effect, stickandspring model, continuum membrane model, mechanical propertie
  • 出版物名称:   INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
  • ISSN:   0020-7403 EI 1879-2162
  • 通讯作者地址:  
  • 被引频次:   8
  • DOI:   10.1016/j.ijmecsci.2021.106895 EA NOV 2021
  • 出版年:   2022

▎ 摘  要

The size-dependent mechanical response of graphene is investigated with an entirely nonlinear molecular mechanics approach. Finite element (FE) simulations under uniaxial and equibiaxial tensile loads are carried out on graphene sheets with increasing size. It is found that the response of graphene remains unchanged after a threshold size. Furthermore, anisotropy is observed for large deformations and a negative Poisson's ratio is found after a critical strain for the zigzag uniaxial load case. The threshold size defines the transition to the continuum theory, which is developed as a membrane model in the fully nonlinear context of finite elasticity. The constitutive parameters of the model are calibrated by fitting the results of the FE simulations. The proposed model represents the basis for accurate predictions of the response of graphene subjected to large in-plane deformations. Nonlinear laws for the size-dependent elastic properties of graphene are derived. These laws can be used in linear elasticity-based models to take into account for material nonlinearity, anisotropy and size effect. Finally, a sensitivity analysis of the molecular mechanics model to the parameters of the interatomic potentials is carried out. The discussion of the results gives insights into the influence of each parameter and useful remarks for the molecular mechanics modeling of graphene.