▎ 摘 要
Two-dimensional nanosheets can leverage on their open architecture to support facile insertion and removal of Li+ as lithium-ion battery electrode materials. In this study, two two-dimensional nanosheets with complementary functions, namely nitrogen-doped graphene and few-layer WS2, were integrated via a facile surfactant-assisted synthesis under hydrothermal conditions. The layer structure and morphology of the composites were confirmed by X-ray diffraction, scanning electron microscopy and high-resolution transmission microscopy. The effects of surfactant amount on the WS2 layer number were investigated and the performance of the layered composites as high energy density lithium-ion battery anodes was evaluated. The composite formed with a surfactant : tungsten precursor ratio of 1 : 1 delivered the best cyclability (average of only 0.08% capacity fade per cycle for 100 cycles) and good rate performance (80% capacity retention with a 50-fold increase in current density from 100 mA g(-1) to 5000 mA g(-1)), and may find uses in power-oriented applications.