• 文献标题:   Tin Dioxide@Carbon Core-Shell Nanoarchitectures Anchored on Wrinkled Graphene for Ultrafast and Stable Lithium Storage
  • 文献类型:   Article
  • 作  者:   ZHOU XF, LIU WJ, YU XY, LIU YJ, FANG YP, KLANKOWSKI S, YANG YQ, BROWN JE, LI J
  • 作者关键词:   tin dioxide, graphene, anode, nanosheet, 3d nanoarchitecture, lithiumion batterie
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   South China Agr Univ
  • 被引频次:   33
  • DOI:   10.1021/am5007194
  • 出版年:   2014

▎ 摘  要

The SnO2@C@GS composites as a new type of 3D nanoarchitecture have been successfully synthesized by a facile hydrothermal process followed by a sintering strategy. Such a 3D nanoarchitecture is made up of SnO2@C core-shell nanospheres and nanochains anchored on wrinkled graphene sheets (GSs). Transmission electron microscopy shows that these core-shell nanoparticles consist of 3-9 nm diameter secondary SnO2 nanoparticles embedded in about 50 nm diameter primary carbon nanospheres. Large quantities of core-shell nanoparticles are uniformly attached to the surface of wrinkled graphene nanosheets, with a portion of them further connected into nanochains. This new 3D nanoarchitecture consists of two different kinds of carbon-buffering matrixes, i.e., the carbon layer produced by glucose carbonization and the added GS template, leading to enhanced lithium storage properties. The lithium-cycling properties of the SnO2@C@GS composite have been evaluated by galvanostatic discharge-charge cycling and electrochemical impedance spectroscopy. Results show that the SnO2@C@GS composite has discharge capacities of 883.5, 845.7, and 830.5 mA h g(-1) in the 20th, 50th and 100th cycles, respectively, at a current density of 200 mA g(-1) and delivers a desirable discharge capacity of 645.2 mA h g(-1) at a rate of 1680 mA g(-1). This new 3D nanoarchitecture exhibits a high capability and excellent cycling and rate performance, holding great potential as a high-rate and stable anode material for lithium storage.