▎ 摘 要
Microcystin-LR belongs to the family of microcystins produced by cyanobacteria and known to be the most toxic of this family. Existence of cyanobacteria in water bodies leads to the contamination of drinking water with microcystin-LR and thus their separation is essential for an advanced water purification system. Here we report functional nanocomposite-based selective separation of microcystin-LR from contaminated water. We have synthesized cyclodextrin-functionalized magnetic composite of colloidal graphene and porous silica where the cyclodextrin component offers host-guest interaction with microcystin-LR and the magnetic component offers easier separation of microcystin-LR from water. High surface area and large extent of chemical functional groups offer high loading (up to 18 wt %) of cyclodextrin with these nanocomposites, and the dispersible form of the nanocomposite offers easier accessibility of cyclodextrin to microcystin-LR. We have shown that microcystin-LR separation efficiency is significantly enhanced after functionalization with cyclodextrin, and among all the tested cyclodextrins, gamma-cyclodextrin offers the best performance. We have also found that graphene-based nanocomposite offers better performance over porous silica-based nanocomposite due to better accessibility of cyclodextrins for interaction with microcystin-LR. The proposed graphene-based functional nanocomposite is environment friendly, reusable, and applicable for advanced water purification.