▎ 摘 要
We propose a novel semiconductor compatible path for nano-graphene synthesis using precursors containing C-Br bonding and liquid catalyst. The unique combination of CBr4 as precursor and Ga as catalyst leads to efficient C precipitation at a synthesis temperature of 200 degrees C or lower. The non-wetting nature of liquid Ga on tested substrates limits nano-scale graphene to form on Ga droplets and substrate surfaces at low synthesis temperatures of T = 400 degrees C. Good quality interface nano-graphene is demonstrated and the quality can be further improved by optimization of synthesis conditions and proper selection of substrate type and orientation. The proposed method provides a scalable and transfer-free route to synthesize graphene/semiconductor heterostructures, graphene quantum dots as well as patterned graphene nano-structures at a medium temperature range of 400-700 degrees C suitable for most important elementary and compound semiconductors.