▎ 摘 要
The structure of graphene on Ni(111) is studied with density functional theory (DFT). Six different structures, i.e., top-fcc, top-hcp, hcp-fcc, bridge-top, bridge-fcc, and bridge-hcp, were investigated. Bridge-top, bridge-fcc, and bridge-hcp are studied here. Top-fcc and hcp-fcc have been considered before, experimentally and theoretically, and regarded as energetically stable structures. The calculations employed the local density approximation (LDA) and the Perdew, Burke, and Ernzerhof (PBE) generalized-gradient approximation to DFT. The results showed that with PBE, none of the structures is stable at the experimentally relevant temperatures; with LDA, only bridge-top and top-fcc are stable. These findings suggest that it will be worthwhile to carry on new experimental studies to revisit the structural determination of the graphene/Ni(111) system, with special emphasis on testing whether bridge-top could exist by itself or coexist with other structures.