• 文献标题:   Fabrication of ultralight nitrogen-doped reduced graphene oxide/nickel ferrite composite foams with three-dimensional porous network structure as ultrathin and high-performance microwave absorbers
  • 文献类型:   Article
  • 作  者:   DENG LL, SHU RW, ZHANG JB
  • 作者关键词:   graphene, nickel ferrite, composite foam, nitrogen doping, microwave absorption
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:  
  • 被引频次:   29
  • DOI:   10.1016/j.jcis.2022.01.104 EA JAN 2022
  • 出版年:   2022

▎ 摘  要

The development of lightweight and high-performance microwave absorbers is still a challenge in the field of electromagnetic absorption. Graphene foam with three-dimensional (3D) network structure and low bulk density has been considered as an ideal candidate for microwave absorption. In this work, nitrogen-doped reduced graphene oxide/nickel ferrite composite foams were prepared by the solvothermal and hydrothermal two-step method. The as-prepared composite foams had very low bulk density (7. 8 similar to 10.0 mg.cm(-3)) and a unique 3D porous network structure. Furthermore, results revealed that the microwave absorption performance of attained composite foams could be improved by adjusting the calcination temperature. Significantly, the obtained composite foam exhibited the best microwave absorption performance when calcined at 650.0 degrees C for 2.0 h. The minimum reflection loss was as large as -60.6 dB at an ultrathin matching thickness of only 1.55 mm, and the effective absorption bandwidth could reach 5.5 GHz with a thin thickness of 1.62 mm. In addition, the possible microwave attenuation mechanisms of attained composite foams were proposed. It was believed that our results could be helpful for developing graphene-based 3D magnetic composites as lightweight and high-performance microwave absorbers. (C) 2022 Elsevier Inc. All rights reserved.