• 文献标题:   Ultrathin graphene oxide membrane with constructed tent-shaped structures for efficient and tunable molecular sieving
  • 文献类型:   Article
  • 作  者:   YANG KJ, PAN TT, HONG SH, ZHANG K, ZHU XY, CHEN BL
  • 作者关键词:  
  • 出版物名称:   ENVIRONMENTAL SCIENCENANO
  • ISSN:   2051-8153 EI 2051-8161
  • 通讯作者地址:   Zhejiang Univ
  • 被引频次:   0
  • DOI:   10.1039/d0en00401d
  • 出版年:   2020

▎ 摘  要

Graphene oxide membranes (GOMs) continue to attract intense interest because of their promising two-dimensional channels. However, finely adjusting a GOM's interplanar spacing for tunable molecular separation is still challenging in aqueous solution. Herein, we report tent-shaped interplanar channels that can be constructed by loading SiO(2)nanospheres (diameter approximate to 30 nm) into ultrathin GOMs (thickness approximate to 20 nm). The tent-shaped structure takes advantage of the augmented space to accelerate the flux while utilizing the preserved circumjacent nano-channel as a molecular sieve. Particularly, by adjusting the density of intercalated SiO(2)nanospheres, the concomitant interlayer channel can be finely tuned with molecular-level accuracy. Precise selectivity makes the SiO(2)loaded GOM (SGM) capable of separating molecules with sub-nanometer differences. At the same time, under the premise of the same rejection, tunable channels endow SGMs with 1.3-63 times higher permeability than that of a pristine ultrathin GOM. This tent-shaped structure supplies a new avenue for GOM structural regulation, and the impressive performance demonstrates its great potential in the fields of water purification and membrane filtration.