▎ 摘 要
This paper reports on photodetection properties of the graphene-Si schottky junction by measuring current-voltage characteristics under 1.55-mu m excitation laser. The measurements have been done on a junction fabricated by depositing mechanically exfoliated natural graphite on top of the pre-patterned silicon substrate. The electrical Schottky barrier height is estimated to be (0.44-0.47) eV with a minimum responsivity of 2.8 mA/W corresponding to an internal quantum efficiency of 10%, which is almost an order of magnitude larger than regular Schottky junctions. A possible explanation for the large quantum efficiency related to the 2-D nature of graphene is discussed. Large quantum efficiency, room temperature IR detection, ease of fabrication along with compatibility with Si devices can open a doorway for novel graphene-based photodetectors.