▎ 摘 要
The combinational modification of the morphology, alloying, and support for Pt catalysts has been optimized towards the oxygen reduction reaction. Graphene-supported PtPd nanorods have lower unfilled Pt d-states than carbon-supported Pt nanoparticles (Pt/C) and their specific and mass activities after the accelerated durability test are about 6.5 and 2.7 times higher than those of Pt/C, attributed to the synergistic electronic modification effect and graphene-metal interaction.