▎ 摘 要
Graphene oxide (GO) and silica (SiO2) nanoparticles have been hybridized using KH550 modified GO (KGO) and Si69 modified SiO2 (MS) to develop natural rubber (NR)-based high-performance tire-treads. Due to donor acceptor and pi-pi interactions of NR with the Si69 and GO respectively, SiO2/GO hybrid (MSKGO) was homogeneously dispersed in NR-latex. During drying and curing, the composite of NR and the MSKGO (NRMSKGO) was converted to covalent bonded network structure through possible condensation and free-radical reactions. GO was converted to reduced GO (RGO). Because of the enlarged interfacial area and synergistic reinforcing effect of covalent bonded MSKRGO, lubricating effect of RGO-layers, the cured composite (NRMSKRGO-V) shows increasing storage modulus and energy dissipation capability, while decreasing loss factor and elongation at break with increasing GO content. Fabrication of tire-tread using only 10 phr of the unvulcanized green composite (NRMSKRGO-U) containing 1% of GO increases the wear resistance by 44.5% (as evaluated by running the real tires), and decreases the rolling resistance by 5.1% while increases the wet skid resistance by 14.6% (as evaluated from the dynamic mechanical analysis (DMA) data).