• 文献标题:   Theoretical study of the CO, NO, and N-2 adsorptions on Li-decorated graphene and boron-doped graphene
  • 文献类型:   Article
  • 作  者:   SONG YD, WANG L, WU LM
  • 作者关键词:   lidecorated pristine graphene, lidecorated boron doped graphene, new sensor or adsorbent, density functional theory
  • 出版物名称:   CANADIAN JOURNAL OF CHEMISTRY
  • ISSN:   0008-4042 EI 1480-3291
  • 通讯作者地址:   Fujian Univ Technol
  • 被引频次:   1
  • DOI:   10.1139/cjc-2017-0346
  • 出版年:   2018

▎ 摘  要

The adsorption properties of common gas molecules (CO, NO, and N-2) on the surface of Li-decorated pristine graphene and Li-decorated boron doped graphene are investigated using density functional theory. The adsorption energy, charge transfer, and density of states of gas molecules on three surfaces have been calculated and discussed, respectively. The results show that Li-decorated pristine graphene has strong interaction with CO and N-2. Compared with Li-decorated pristine graphene, Li-decorated boron doped graphene exhibit a comparable adsorption ability of CO and N-2. Moreover, Li-decorated boron doped graphene have a more significant adsorption energy to NO than that of Li-decorated pristine graphene because of the chemical interaction of the NO gas molecule. The strong interaction between the NO molecule and substrate (Li-decorated boron doped graphene) induces dramatic changes to the electrical conductivity of Li-decorated boron doped graphene. The results indicate that Li-decorated boron doped graphene would be an excellent candidate for sensing NO gas.