▎ 摘 要
In the present study, an electrochemical exfoliation technique was used to synthesize a series of zinc oxide/graphene (ZnO/Gr) nanocomposites using different concentrations of zinc nitrate in an electrolyte solution. The prepared ZnO/Gr nanocomposites were characterized using a range of analytical techniques and evaluated further for their photocatalytic activity over methyl orange (MO) and rhodamine B (RhB) under UV light. Scanning electron microscopy and transmission electron microscopy showed that the ZnO/Gr nanocomposite synthesized using 7 mmol of zinc nitrate exhibited a sheet-like morphology with a uniform decoration of ZnO nanoparticles over the graphene sheets, as well as the maximum photodegradation capacity for MO (>96%) and RhB (>89%) among the composites prepared. The loading of graphene was found to be crucial for deciding the enhancement in the photocatalytic activity, and resulted in a remarkable improvement in photocatalytic activity (similar to 7 times for MO and similar to 2 times for RhB) over bare ZnO. Photoluminescence spectroscopic analysis revealed the improved separation of electron-hole pairs with the graphene loading, which is mainly responsible for the enhanced photocatalytic activity. The present work possesses the advantage of in situ synthesis of few layered less defective graphene/ZnO composites with enhanced photocatalytic activity.