• 文献标题:   Reduction of interfacial thermal resistance of overlapped graphene by bonding carbon chains*
  • 文献类型:   Article
  • 作  者:   HUANG YW, FENG WT, YU XX, DENG CC, YANG N
  • 作者关键词:   phonon engineering, graphene, phonon weak couplings model, molecular dynamic
  • 出版物名称:   CHINESE PHYSICS B
  • ISSN:   1674-1056 EI 1741-4199
  • 通讯作者地址:   Huazhong Univ Sci Technol
  • 被引频次:   0
  • DOI:   10.1088/1674-1056/abc677
  • 出版年:   2020

▎ 摘  要

Exploring the mechanism of interfacial thermal transport and reducing the interfacial thermal resistance are of great importance for thermal management and modulation. Herein, the interfacial thermal resistance between overlapped graphene nanoribbons is largely reduced by adding bonded carbon chains as shown by molecular dynamics simulations. And the analytical model (phonon weak couplings model, PWCM) is utilized to analyze and explain the two-dimensional thermal transport mechanism at the cross-interface. An order of magnitude reduction of the interfacial thermal resistance is found as the graphene nanoribbons are bonded by just one carbon chain. Interestingly, the decreasing rate of the interfacial thermal resistance slows down gradually with the increasing number of carbon chains, which can be explained by the proposed theoretical relationship based on analytical model. Moreover, by the comparison of PWCM and the traditional simplified model, the accuracy of PWCM is demonstrated in the overlapped graphene nanoribbons. This work provides a new way to improve the interfacial thermal transport and reveal the essential mechanism for low-dimensional materials applied in thermal management.