• 文献标题:   Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide
  • 文献类型:   Article
  • 作  者:   MARTINGARCIA B, BI Y, PRATO M, SPIRITO D, KRAHNE R, KONSTANTATOS G, MOREELS I
  • 作者关键词:   nanocrystal, reduced graphene oxide, photovoltaic, stability, moisture
  • 出版物名称:   SOLAR ENERGY MATERIALS SOLAR CELLS
  • ISSN:   0927-0248 EI 1879-3398
  • 通讯作者地址:   Istituto Italiano Tecnol
  • 被引频次:   28
  • DOI:   10.1016/j.solmat.2018.04.005
  • 出版年:   2018

▎ 摘  要

PbS nanocrystals are an important narrow-gap material for solar cells and photodetectors. Nevertheless, their application may be limited because device performance can be affected by atmospheric conditions. Indeed, the presence of oxygen and/or water can degrade the active layers, possibly leading to device failure. Strategies to address this issue are therefore actively explored. Here we report a solution-processed PbS quantum dot solar cell, consisting of a PbS-silane functionalized reduced graphene oxide (PbS-rGO) layer on top of the PbS absorber film, which enhances device stability, especially when the solar cells are exposed to moisture. Power conversion efficiency (PCE) measurements demonstrate a slower degradation under continuous illumination for solar cells with PbS-rGO. When storing the samples under saturated water vapor, differences are even more remarkable: with PbS-rGO the solar cells essentially maintain their initial PCE, while the PCE of the PbS reference devices is reduced by 50% after 5 days. Scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy reveal the damage to the PbS films and the formation of PbSOX crystals in the PbS reference devices. Such crystals are not observed in the PbS-rGO devices, further supporting the importance of the PbSrGO barrier layer.