▎ 摘 要
Excellent thermal management capacity is urgently required to tackle booming heat flux density of electronic devices. As an attractive building block in constructing functional materials, graphene oxide (GO) is plagued with low thermal conductivity (TC). In this contribution, we constructed aligned hybrid network in the GO film to ameliorate multifaceted performance. Silicon carbide nanowires (SiCNWs) were first functionalized by polydopamine (PDA) to improve the dispersed ability and the interfacial interaction with GO sheets. Subsequently, effective thermally conductive pathways were paved by oriented arrangement of SiCNW@PDA and GO sheets. The resultant composite film presented excellent in-plane TC of 29.4 W/mK and ultrahigh anisotropy ratio of similar to 12,800% by introducing 80 wt% SiCNW@PDA. In addition, temperature stability and fatigue reliability were also favourable. More intriguingly, flame resistance was integrated in the composite films due to incorporation of noncombustible SiCNW framework. Our work offers a paradigmatic means to fabricate multifunctional thermal management materials.