▎ 摘 要
This study provides a significant enhancement in CO, photoconversion efficiency by the functionalization of a reduced graphene oxide/cadmium sulfide composite (rGO/CdS) with amine. The amine-functionalized graphene/CdS composite (AG/CdS) was obtained in two steps. First, graphene oxide (GO) was selectively deposited via electrostatic interaction with CdS nanoparticles modified with 3-amino-propyltriethoxysilane. Subsequently, ethylenediamine (NH2C2H4NH2) was grafted by an N,N'-dicyclohexylcarbodiimide coupling reaction between the amine group of ethylenediamine and the carboxylic group of GO. As a result, a few layers of amine-functionalized graphene wrapped CdS uniformly, forming a large interfacial area. Under visible light, the photocurrent through the AG/CdS significantly increased because of enhanced charge separation in CdS. The CO, adsorption capacity on AG/CdS was 4 times greater than that on rGO/CdS at 1 bar. These effects resulted in a methane formation rate of 2.84 mu mol/(g h) under visible light and CO2 at 1 bar, corresponding to 3.5 times that observed for rGO/CdS. Interestingly, a high methane formation rate (1.62 mu mol/(g h)) was observed for AG/CdS under CO, at low pressure (0.1 bar), corresponding to a value 20 times greater than that observed for the rGO/CdS. Thus, the enhanced performance for photocatalytic reduction of CO, on the AG/CdS is due to the improved CO, adsorption related to the amine groups on amine-functionalized graphene, which sustains the strong absorption of visible light and superior charge-transfer properties in comparison with those of graphene.