▎ 摘 要
The restoration of graphitic structures from defective graphene oxide was examined in a reactive ethanol environment at ultrahigh temperatures. Structural analysis by Raman spectroscopy indicates that turbostratic structures as well as high crystallinity in multilayer graphene were accomplished by an ultrahigh-temperature process in an ethanol environment. This phenomenon is quite anomalous since it is in striking contrast to the results observed in inert environments, where graphitization proceeds significantly to form a Bernal stacking multilayer graphene. The suppression of graphitization in ethanol environments is probably caused by the simultaneous supply of carbon and etching species during the restoration process. (C) 2016 The Japan Society of Applied Physics.