▎ 摘 要
The past two decades have witnessed increasingly rapid advances in the field of single-molecule electronics, which are expected to overcome the limitation of the miniaturization of silicon-based microdevices, thus promoting the development of device manufacturing technologies and characterization means. In addition to this, they can enable us to investigate the intrinsic properties of materials at the atomic- or molecular-length scale and probe new phenomena that are inaccessible in ensemble experiments. In this perspective, we start from a brief introduction on the manufacturing method of graphene-molecule-graphene single-molecule junctions (GMG-SMJs). Then, we make a description on the remarkable functions of GMG-SMJs, especially on the investigation of single-molecule charge transport and dynamics. Finally, we conclude by discussing the main challenges and future research directions of molecular electronics.