▎ 摘 要
In this study, the new lanthanum sulfide nanoparticle (La2S3) was synthesized and incorporated onto magnetic graphene oxide (MGO) sheets surface to produce potential adsorbent (MGO@LaS) for efficient removal of lead ions (Pb2+) from wastewater. The synthesized MGO@LaS adsorbent was characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The effective parameters on the adsorption process including solution pH (similar to 5), adsorbent dosage (20 mg), contact time (40 min), initial Pb2+ concentration and temperature were studied. The removal efficiency was obtained >95% for lead ions at pH 5 with 20 mg adsorbent. To validate the adsorption rate and mechanism, the kinetic and thermodynamic models were studied based on experimental data. The Langmuir isotherm model was best fitted to initial equilibrium concentration with a maximum adsorption capacity of 123.46 mg/g. This indicated a monolayer adsorption pattern for Pb2+ ions over MGO@LaS. The pseudo-second-order as the kinetic model was best fitted to describe the adsorption rate due to high R-2 > 0.999 as compared first-order. A thermodynamic model suggested a chemisorption and physisorption adsorption mechanism for Pb2+ ions uptake into MGO@LaS at different temperatures; Delta G degrees < 5.99 kJ mol(-1) at 20 degrees C and Delta G degrees -18.2 kJ mol(-1) at 45 degrees C. The obtained results showed that the novel nanocomposite (MGO@LaS) can be used as an alternative adsorbent in wastewater treatment.