▎ 摘 要
The fabrication of a thermolysin-based biosensor capable of detecting ochratoxin A (OTA) from food samples is described. The electrochemical deposition of calcium cross-linked cellulose film (CCLC) and gold nanoparticles (AuNPs) on graphene (GR) for modification of a glassy carbon electrode (GCE) is the first step. Then the thermolysin (TLN) enzyme in a polyvinyl alcohol (PVA)/polyethylenimine (PEI) matrix is immobilized. The impedimetric biosensor response is linear from 0.2 nM to 100 nM with a detection limit of 0.2 nM. The obtained stable and reproducible biosensor is then applied for the detection of OTA in spiked extracts from coffee beans.