• 文献标题:   Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene
  • 文献类型:   Article
  • 作  者:   DU JH, ZHANG DD, WANG X, JIN H, ZHANG WM, TONG B, LIU Y, BURN PL, CHENG HM, REN WC
  • 作者关键词:   organic solar cell, graphene, transparent conductive electrode, surface roughnes
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:  
  • 被引频次:   22
  • DOI:   10.1016/j.carbon.2020.08.038
  • 出版年:   2021

▎ 摘  要

Graphene has shown tremendous potential as a transparent conductive electrode (TCE) for flexible organic solar cells (OSCs). However, the trade-off between electrical conductance and transparency as well as surface roughness of the graphene TCE with increasing layer number limits power conversion efficiency (PCE) enhancement and its use for large-area OSCs. Here, we use a 300 nm-thick poly[(2,5-bis(2-hexyldecyloxy) phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c]-[1,2,5]thiadiazole)]:[6,6]-phenyl-C-71-butyric acid methyl ester blend as the photoactive layer and a benzimidazole (BI)-doped graphene as the transparent anode to demonstrate efficient OSCs with good flexibility. It is found that 3 layer (L) graphene had the best balance between sheet resistance, optical transmittance and surface roughness for optimized cell design. A 0.2 cm2 cell with a 3L BI-doped graphene anode had a PCE of 6.85%, which is one of the highest PCE values reported so far for flexible graphene anode-based OSCs. The flexible cells were mechanically robust, showing only a small performance degradation during up to 250 flexing cycles. Moreover, the combination of the thick photoactive layer with the optimized 3L BI-doped graphene TCE enabled production of 1.6 cm(2) flexible OSCs with a PCE of 1.8%. Our work illustrates the importance of graphene TCE development for flexible OSCs as well as other wearable optoelectronic devices. (C) 2020 Elsevier Ltd. All rights reserved.