• 文献标题:   Tunable resistive switching of vertical ReSe2/graphene hetero-structure enabled by Schottky barrier height and DUV light
  • 文献类型:   Article
  • 作  者:   REHMAN S, KIM H, KHAN MF, HUR JH, EOM J, KIM DK
  • 作者关键词:   graphene, rhenium diselenide, deep ultraviolet light, resistive switching, work function
  • 出版物名称:   JOURNAL OF ALLOYS COMPOUNDS
  • ISSN:   0925-8388 EI 1873-4669
  • 通讯作者地址:  
  • 被引频次:   25
  • DOI:   10.1016/j.jallcom.2020.157310
  • 出版年:   2021

▎ 摘  要

The development of the novel three-terminal hybrid lateral memristor and transistor device called memtransistor, has successfully provided additional functionalities in memory devices. However, their high operating voltage is critical. In this report, we have utilized the vertical heterojunction of Copper/Rhenium diselenide/Graphene to obtain low power gate tunable memristor. In such devices, resistive switching is governed by barrier height at the Rhenium diselenide/Graphene) interface, which controls the flow of electrons to neutralize Cu ions for the formation of the Cu filament. Therefore, barrier height is manipulated from similar to 60 meV at V-g = 90 V to similar to 828 meV at V-g = - 90 V by tuning the work function of the mono layer graphene with back-gate voltages. Subsequently, the tuning of barrier height ultimately modulates the operating voltage from 0.53 V to 3.67 V and R-on/R-off ratio from 10(2) to 10(5) by changing the V-g from 90 V to -90 V respectively. Moreover, the deep ultraviolet light assisted resistance switching effect is also investigated in gate-controlled Copper/Rhenium diselenide/Graphene devices. Thus, gate modulation and deep ultraviolet light irradiation make it compatible for future application in integrated optoelectronic systems. (C) 2020 Elsevier B.V. All rights reserved.