▎ 摘 要
Graphene, a very intriguing two-dimensional Dirac electronic system with high carrier mobility, is promising for spintronics. However, the long-range ferromagnetic order is always absent in pristine graphene. Here we report the fabrication and transport properties of graphene-BiFeO3 heterostructures. It is found that the magnetic proximity effect results in a strong Zeeman splitting in graphene with the exchange field up to hundreds of tesla. The nu = 0 quantum Hall state of graphene is further transformed into a ferromagnetic state or a canted antiferromagnetic state in the presence of a perpendicular magnetic field. Our findings in graphene/BiFeO3 heterostructure are therefore promising for future spintronics.