• 文献标题:   Reversible Basal Plane Hydrogenation of Graphene
  • 文献类型:   Article
  • 作  者:   RYU S, HAN MY, MAULTZSCH J, HEINZ TF, KIM P, STEIGERWALD ML, BRUS LE
  • 作者关键词:  
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Columbia Univ
  • 被引频次:   430
  • DOI:   10.1021/nl802940s
  • 出版年:   2008

▎ 摘  要

We report the chemical reaction of single-layer graphene with hydrogen atoms, generated in situ by electron-induced dissociation of hydrogen silsesquioxane (HSQ). Hydrogenation, forming sp(3) C-H functionality on the basal plane of graphene, proceeds at a higher rate for single than for double layers, demonstrating the enhanced chemical reactivity of single sheet graphene. The net H atom sticking probability on single layers at 300 K is at least 0.03, which exceeds that of double layers by at least a factor of 15. Chemisorbed hydrogen atoms, which give rise to a prominent Raman D band, can be detached by thermal annealing at 100 similar to 200 degrees C. The resulting dehydrogenated graphene is "activated" when photothermally heated it reversibly binds ambient oxygen, leading to hole doping of the graphene. This functionalization of graphene can be exploited to manipulate electronic and charge transport properties of graphene devices.