• 文献标题:   Armchair graphene nanoribbons with giant spin thermoelectric efficiency
  • 文献类型:   Article
  • 作  者:   SHIRDELHAVAR M, FARGHADAN R
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:   Univ Kashan
  • 被引频次:   1
  • DOI:   10.1039/c8cp02264j
  • 出版年:   2018

▎ 摘  要

Spin-caloritronic effects in armchair graphene nanoribbons (AGNRs) with various ribbon widths and periodic structural defects in the form of triangular antidots were systematically studied. Our results showed that by engineering defects in AGNRs, one could not only reduce the phononic thermal conductance for enhancing the thermoelectric efficiency, but also induce a ferromagnetic ground state. Interestingly, AGNRs with triangular antidots exhibit spin-semiconducting behavior with a tunable spin gap and a narrow spin-polarized band around the Fermi level. Therefore, AGNRs with antidots exhibit spin-up and spin-down currents with opposite flow directions under a temperature gradient, and they also exhibit a giant spin Seebeck coefficient () and spin figure of merit () that are much larger than those of zigzag GNRs. Finally, these results pave the way towards the application of defective AGNRs in spin-caloritronic devices operating at room temperature with a giant spin thermoelectric efficiency.