• 文献标题:   Graphene-Piezoelectric Material Heterostructure for Harvesting Energy from Water Flow
  • 文献类型:   Article
  • 作  者:   ZHONG HK, XIA J, WANG FC, CHEN HS, WU HA, LIN SS
  • 作者关键词:  
  • 出版物名称:   ADVANCED FUNCTIONAL MATERIALS
  • ISSN:   1616-301X EI 1616-3028
  • 通讯作者地址:   Zhejiang Univ
  • 被引频次:   19
  • DOI:   10.1002/adfm.201604226
  • 出版年:   2017

▎ 摘  要

Recently, liquid flow over monolayer graphene has been experimentally demonstrated to generate an induced voltage in the flow direction, and various physical mechanisms have been proposed to explain the electricity-generating process between liquid and graphene. However, there are significant discrepancies in the reported results with non-ionic liquid: the observed voltage responses with deionized (DI) water vary from lab to lab under presumably similar flowing conditions. Here, a graphene-piezoelectric material heterostructure is proposed for harvesting energy from water flow; it is shown that the introduction of a piezoelectric template beneath graphene results in an obvious voltage output up to 0.1 V even with DI water. This potential arises from a continuous charging-discharging process in graphene, which is suggested to be a result of a relatively retarded screening effect of the water for the generated piezoelectric charges than that of the graphene layer, as revealed by first-principles calculations. This work considers a dynamic charge interaction among water, graphene, and the substrate, highlighting the crucial role of the underlying substrate in the electricity-generating process, which will greatly enhance understanding of the flow-induced voltage and push the graphene-water nanogenerator close to practical applications.