▎ 摘 要
In this work, graphene materials have been prepared via thermal treatment of graphene oxides with the aid of intercalated nitric acid. The nitric acid not only favors the expansion of graphene but also facilitates the generation of pores into graphene. The specific surface area of such graphene frameworks is as high as 463 m(2)/g, and the pore volume reaches up to 2.23 cm(3)/g. When tested as supercapacitor electrodes, the graphene frameworks delivered an extremely high specific capacitance of similar to 370 F/g while simultaneously maintained an excellent energy density of 12.9 Wh/kg and power delivery of 250 W/kg in aqueous electrolyte. These performances are much better than those of the control samples prepared without the aid of nitric acid. The porous structure and large specific surface area are believed to have contributed to the high performances.