• 文献标题:   Mesoporous graphene-like carbon sheet: high-power supercapacitor and outstanding catalyst support
  • 文献类型:   Article
  • 作  者:   ZHANG PF, QIAO ZA, ZHANG ZY, WAN S, DAI S
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY A
  • ISSN:   2050-7488 EI 2050-7496
  • 通讯作者地址:   Oak Ridge Natl Lab
  • 被引频次:   49
  • DOI:   10.1039/c4ta02307b
  • 出版年:   2014

▎ 摘  要

Nowadays, continuous scientific endeavors are being directed toward low-cost, mild, scalable and reliable synthesis of graphene-based materials, in order to advance various graphene-related applications. So far, specific surface areas of current bulk graphene powders or graphene-like nanosheets are much lower than the theoretical value (2630 m(2) g(-1)) of individual graphene, remaining a challenge for carbon chemists. Herein, mesoporous graphene-like carbon sheets with high specific surface area (up to 2607 m(2) g(-1)) and high pore volume (up to 3.12 cm(3) g(-1)) were synthesized by using polyimide chemistry in the molten salt "solvent." In this process, abundant pyromellitic dianhydride and aromatic diamine undergo polycondensation together with further carbonization in molten KCl-ZnCl2, in which in situ formed linear aromatic polyimide with a sp(2) hybridized carbon skeleton could be directly coupled and rearranged into a two-dimensional graphene-like nanosheet around the "salt scaffold". Carbon nanosheets with well-defined mesopores (similar to 3.5 nm) could be easily obtained by washing salt melts in water, while the salts could be recovered and reused for the subsequent reaction. The nitrogen atoms in amine also afforded the resulting carbon with uniform foreign atoms (nitrogen content - similar to 6%). Moreover, holey carbon sheets with well-dispersed and through-plane nanoholes (diameter: 5-10 nm) could be constructed by using different monomers. Being a potential electrode material in supercapacitors, the as-made carbon nanosheet possessed a significant specific capacitance (131.4-275.5 F g(-1)) even at a scan rate of 2000 mV s(-1). Additionally, powerful nanohybrids of carbon sheet-Co3O4 were also prepared with good performance in the aerobic oxidation of alcohols and amines to aldehydes and imines, respectively.