• 文献标题:   First-Principles Calculations of Graphene-WS2 Nanoribbons As Electrode Material for Magnesium-Ion Batteries
  • 文献类型:   Article
  • 作  者:   MOHAMMADI M, VAKILINEZHAAD GR
  • 作者关键词:   firstprinciples calculation, graphenews2 nanoribbon, magnesiumion batterie
  • 出版物名称:   JOURNAL OF ELECTRONIC MATERIALS
  • ISSN:   0361-5235 EI 1543-186X
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1007/s11664-021-09359-9 EA JAN 2022
  • 出版年:   2022

▎ 摘  要

Three-dimensional (3D) heterostructures show potential application as electrode materials in rechargeable batteries because of their appropriate electronic and energy storage properties. Herein, by employing density functional theory calculations, we consider performance of 3D graphene-WS2 nanoribbon (3DGW) hybrid structures as electrode materials for Mg-ion batteries. It is found that graphene can increase the Mg adsorption energies on the 3DGW surface with respect to the WS2 nanoribbon which can improve cycling stability. The calculated activation barrier of Mg diffusion on the 3DGW surface in the range of 0.47 eV and 0.51 eV, the average open-circuit voltage 0.86 V as well as the metallic conductivity of Mg@3DGW ensured excellent kinetic properties and electronic conduction of 3DGW for use as battery electrodes. The above findings confirmed that the 3DGW is a very promising electrode material for Mg rechargeable ion batteries.