• 文献标题:   Graphene oxide incorporated chitosan/acrylamide/itaconic acid semi-interpenetrating network hydrogel bio-adsorbents for highly efficient and selective removal of cationic dyes
  • 文献类型:   Article
  • 作  者:   TAMER Y, KOSUCU A, BERBER H
  • 作者关键词:   bioadsorbent, chitosan, graphene oxide, semiipn hydrogel, methylene blue
  • 出版物名称:   INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
  • ISSN:   0141-8130 EI 1879-0003
  • 通讯作者地址:  
  • 被引频次:   11
  • DOI:   10.1016/j.ijbiomac.2022.07.238 EA AUG 2022
  • 出版年:   2022

▎ 摘  要

In recent years, polymeric bio-adsorbents offers high removal efficiency, superior adsorption capacity and selectivity against various pollutants in aqueous medium. While designing these adsorbents, their environmental friendliness, sustainability, renewability, easy accessibility, and cost-effectiveness should be considered. In this study, GO incorporated semi-interpenetrating network (semi-IPN) nanocomposite hydrogels (CS/AAm/IA/GO) were obtained by free radical copolymerization of acrylamide (AAm) and itaconic acid (IA) in the presence of chitosan (CS) as an environmentally friendly bio-adsorbent. GO significantly improved the thermal stability, compressive strength, and percentage swelling of the hydrogel. The selective adsorption studies demonstrated that methylene blue (MB) was the most efficiently removed dye from both individual and mixed dye systems with 99.8 % removal efficiency. The adsorption capacity was found to be 247.47 mg g(-1) using 0.025 g hydrogel adsorbent containing 0.5 wt% of GO and an initial MB concentration of 5 mg L-1 at pH 8 over 90 min at room temperature. The kinetic and isotherm studies revealed that the adsorption process followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm. Thermodynamic studies suggested the spontaneous and endothermic nature of MB adsorption. Also, the MB removal efficiency above 96 % was obtained after 7 consecutive adsorption-desorption cycles while maintaining the structural stability of the bio-adsorbent.