▎ 摘 要
We report on the facile synthesis of graphene oxide (GO) supported CoSe2 (CoSe2/GO) used for high-performance supercapattery electrodes. CoSe2 is first synthesized through the selenylation of a typical zeolitic imidazolate framework (ZIF-67), which is then decorated on the surface of GO via the hydrothermal method. The characterizations of SEM, TEM, XRD and oS further confirm the successful decoration of GO with CoSe2. The electrochemical performances of the as-synthesized CoSe2/GO are investigated, and the results indicate that the CoSe2/GO exhibits considerable specific capacity (108.31 mAh g-1 at 1 A g-1) and high cyclic stability (capacity retention of 91.2% after 5,000 cycles). Compared with GO and CoSe2 alone, the greatly enhanced electrochemical performances of the CoSe2/GO might be attributed to the synergistic effect of GO and CoSe2. These findings suggest that the developed CoSe2/GO could be a potential candidate to be used as high-performance supercapattery electrode materials.