• 文献标题:   Impurity cyclotron resonance of anomalous Dirac electrons in graphene
  • 文献类型:   Article
  • 作  者:   KIM SC, YANG SRE, MACDONALD AH
  • 作者关键词:   cyclotron resonance, graphene, optical conductivity
  • 出版物名称:   JOURNAL OF PHYSICSCONDENSED MATTER
  • ISSN:   0953-8984 EI 1361-648X
  • 通讯作者地址:   Korea Univ
  • 被引频次:   4
  • DOI:   10.1088/0953-8984/26/32/325302
  • 出版年:   2014

▎ 摘  要

We have investigated a new feature of impurity cyclotron resonances common to various localized potentials of graphene. A localized potential can interact with a magnetic field in an unexpected way in graphene. It can lead to formation of anomalous boundstates that have a sharp peak with a width R in the probability density inside the potential and a broad peak of size magnetic length l outside the potential. We investigate optical matrix elements of anomalous states and find that they are unusually small and depend sensitively on the magnetic field. The effect of many-body interactions on their optical conductivity is investigated using a self-consistent time-dependent Hartree-Fock approach. For a completely filled Landau level we find that an excited electron-hole pair, originating from the optical transition between two anomalous impurity states, is nearly uncorrelated with other electron-hole pairs, although it displays substantial exchange self-energy effects. This absence of correlation is a consequence of a small vertex correction in comparison to the difference between renormalized transition energies computed within the one electron-hole pair approximation. However, an excited electron-hole pair originating from the optical transition between a normal and an anomalous impurity state can be substantially correlated with other electron-hole states with a significant optical strength.