• 文献标题:   Scalable Synthesis of TiO2/Graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries
  • 文献类型:   Article
  • 作  者:   XIN X, ZHOU XF, WU JH, YAO XY, LIU ZP
  • 作者关键词:   liion battery, titania, graphene, anode, nanocomposite
  • 出版物名称:   ACS NANO
  • ISSN:   1936-0851 EI 1936-086X
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   215
  • DOI:   10.1021/nn304725m
  • 出版年:   2012

▎ 摘  要

A simple and scalable method is developed to synthesize TiO2/graphene nanostructured composites as high-performance anode materials for Li-ion batteries using hydroxyl titanium oxalate (HTO) as the intermediate for TiO2. With assistance of a surfactant, amorphous HTO can condense as a flower-like nanostructure on graphene oxide (GO) sheets. By calcination, the HTO/GO nanocomposite can be converted to TiO2/graphene nanocomposite with well preserved flower-like nanostructure. In the composite, TiO2 nanoparticles with an ultrasmall size of several nanometers construct the porous flower-like nanostructure which strongly attached onto conductive graphene nanosheets. The TiO2/graphene nanocomposite is able to deliver a capacity of 230 mA h g(-1) at 0.1 C (corresponding to a current density of 17 mA g(-1)), and demonstrates superior high-rate charge-discharge capability and cycling stability at charge/discharge rates up to 50 C in a half cell configuration. Full cell measurement using the TiO2/graphene as the anode material and spinel LiMnO2 as the cathode material exhibit good high-rate performance and cycling stability, indicating that the TiO2/graphene nanocomposite has a practical application potential in advanced Li-ion batteries.