▎ 摘 要
Graphene is a 2D material combining numerous outstanding physical properties, including high flexibility and strength, extremely high thermal conductivity and electron mobility, transparency, etc., which make it a unique testbed to explore fundamental physical phenomena. Such physical properties can be further tuned by combining graphene with other nanomaterials or (macro)molecules to form hybrid functional materials, which by design can display not only the properties of the individual components but also exhibit new properties and enhanced characteristics arising from the synergic interaction of the components. The implementation of the hybrid approach to graphene also allows boosting the performances in a multitude of technological applications. This review reports the hybrids formed by graphene combined with other low-dimensional nanomaterials of diverse dimensionality (0D, 1D, and 2D) and (macro)molecules, with emphasis on the synthetic methods. The most important applications of these hybrids in the fields of sensing, water purification, energy storage, biomedical, (photo)catalysis, and opto(electronics) are also reviewed, with a special focus on the superior performances of these hybrids compared to the individual, nonhybridized components.