▎ 摘 要
Background:Carbon-based metal oxide nanocomposites are always been the prime material for study in the field of energy storage due to their rich abundance, low toxicity, high surface area, electrical conductivity and diverse oxidation states. Methods:In this direction, novel zirconia/graphene oxide (ZrO2/GO) nanocomposites are fabricated on the surface of 316 stainless steel for studying their specific capacitance and power performance. ZrO2 and GO in varying mass ratio (1:1, 1:2, and 2:1) were used to fabricate the electroactive material. The physical interaction between the two was determined by Fourier transform-infrared, X-ray diffraction and scanning electron microscopy. TG-DTA-DG informs about the exhibited thermal property by the variants. The cyclic voltammetry was done to study the specific capacitance of the electroactive materials with reference to Ag/AgCl at scan rate (V/s) ranging 0.15-0.001 in 1.0 M KOH. The specific capacitance of ZrO2 was found to be 17.13 Fg(-1) at 0.001 Vs(-1). The representative (nanocomposite) NC-II shows the maximum specific capacitance of 299.26 Fg(-1) at similar rate of scan with power density of 59.40 W/kg. Conclusion:The nanocomposites show comparable level of charge-discharge behavior with long-term cycleability, suggesting that fabricated ZrO2/GO nanocomposite electrodes are promising candidate for the high-performance energy storage devices.