• 文献标题:   Si-Doped Nitrogenated Holey Graphene (C2N) as a Promising Gas Sensor for O-Containing Volatile Organic Compounds (VOCs) and Ammonia
  • 文献类型:   Article
  • 作  者:   LIU Y, YE CX, ZHAO HX, LIN KX, CAO XR, AI YJ
  • 作者关键词:   volatile organic compounds vocs, ammonia, nitrogenated holey graphene c2n, silicon si doping, density functional theory dft
  • 出版物名称:   CRYSTALS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.3390/cryst13050816
  • 出版年:   2023

▎ 摘  要

Two-dimensional (2D) crystalline materials have been regarded as promising sensor materials due to their large specific surface area, high sensitivity, and low cost. In the present work, based on the density functional theory (DFT) method, the sensor performance of novel silicon (Si)-doped nitrogenated holey graphene (SiC2N) toward five typical VOCs (HCHO, CH3OH, C3H6O, C6H6, and C2HCl3) and ammonia were systematically investigated. The results demonstrated that Si doping could effectively decrease the band gap of C2N and simultaneously provide active sites for gas adsorption. Through comprehensive analyses of adsorption energies and electronic properties, the SiC2N was found to exhibit high selectivity for O-containing VOCs (HCHO, CH3OH, and C3H6O) and NH3 via a covalent bond. Moreover, after the HCHO, CH3OH, C3H6O, and NH3 adsorption, the band gap of SiC2N greatly decreases from 1.07 eV to 0.29, 0.13, 0.25, and 0.12 eV, respectively, which indicated the enhancement the conductivity and enabled the SiC2N to be a highly sensitive resistive-type sensor. In addition, the SiC2N possesses a short recovery time. For instance, the recovery time of HCHO desorbed from SiC2N is 29.2 s at room temperature. Our work anticipates a wide range of potential applications of Si-doped C2N for the detection of toxic VOCs and ammonia, and supplies a valuable reference for the development of C2N-based gas sensors.