• 文献标题:   Highly Conductive Polypropylene-Graphene Nonwoven Composite via Interface Engineering
  • 文献类型:   Article
  • 作  者:   PAN Q, SHIM E, POURDEYHIMI B, GAO W
  • 作者关键词:  
  • 出版物名称:   LANGMUIR
  • ISSN:   0743-7463
  • 通讯作者地址:   North Carolina State Univ
  • 被引频次:   6
  • DOI:   10.1021/acs.langmuir.7b01508
  • 出版年:   2017

▎ 摘  要

Here we report a highly conductive-polypropylene-graphene nonwoven composite via direct coating of melt blown polypropylene (PP) nonwoven fabrics with graphene oxide (GO) dispersions in N,N-dimethylformamide (DMF), followed by the chemical reduction of GO with hydroiodic acid (HI). GO as an amphiphilic macromolecule can be dispersed in DMF homogeneously at a concentration of 5 mg/mL, which has much lower surface tension (37.5 mN/m) than that of GO in water (72.9 mN/m, at 5 mg/mL). The hydrophobic PP nonwoven has a surface energy of 30.1 mN/m, close to the surface tension of GO in DMF. Therefore, the PP nonwoven can be easily wetted by the GO/DMF dispersion without any pretreatment. Soaking PP nonwoven In a GO/DMF dispersion leads to uniform coatings of GO chemical reduction of GO to graphene, the resulting PP/graphene nonwoven composite offers an electrical conductivity of 35.6 S m(-1) at graphene loading of 5.2 wt %, the highest among the existing conductive PP systems reported, indicating that surface tension of coating baths has significant impact on the coating uniformity and affinity. The conductivity of our PP/graphene nonwoven is also stable against stifling washing test. In addition, here we demonstrate a monolithic supercapacitor derived from the PP-GO nonwoven composite by using a direct laser-patterning process. The resulted sandwich supercapacitor shows a high areal capacitance of 4.18 mF/cm(2) in PVA-H2SO4 gel electrolyte. The resulting highly conductive or capacitive PP/graphene nonwoven carries great promise to be used as electronic textiles.