• 文献标题:   Polypyrrole nanoparticles embedded nitrogen-doped graphene composites as novel cathode for long life cycles and high-power zinc-ion hybrid supercapacitors
  • 文献类型:   Article
  • 作  者:   PATTANANUWAT P, PORNPRASERTSUK R, QIN J, PRASERTKAEW S
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   7
  • DOI:   10.1039/d1ra05503h
  • 出版年:   2021

▎ 摘  要

The well-designed network structure of synthetic polypyrrole (PPy) nanoparticles embedded on a nitrogen-doped graphene (N-rGO) surface was utilized as a cathode for aqueous zinc-ion hybrid supercapacitors. Owing to the combination of the redox surface of PPy and the two-dimensional network structure of N-rGO, the PPy/N-rGO cathode affords rapid transport channels for Zn2+ ion adsorption/desorption and a faradaic reaction toward the synergistic composite materials. Subsequently, the constructed zinc-ion hybrid supercapacitors with the optimized PPy/N-rGO cathode composites deliver the highest capacity of 145.32 mA h g(-1) at 0.1 A g(-1) and the maximum energy density of 232.50 W h kg(-1) at a power density of 160 W kg(-1). Besides this, excellent cycling stability of 85% retention after 10 000 charge-discharge cycles at 7.0 A g(-1) was achieved. The high-rate capabilities with long life cycle performance of these novel zinc-ion hybrid supercapacitors could find practical use in a wide range of applications, ranging from next-generation electronic devices to large-scale stationary energy storage.