• 文献标题:   Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements
  • 文献类型:   Article
  • 作  者:   CHILDRES I, JAUREGUI LA, TIAN JF, CHEN YP
  • 作者关键词:  
  • 出版物名称:   NEW JOURNAL OF PHYSICS
  • ISSN:   1367-2630
  • 通讯作者地址:   Purdue Univ
  • 被引频次:   122
  • DOI:   10.1088/1367-2630/13/2/025008
  • 出版年:   2011

▎ 摘  要

In this paper, we report a study of graphene and graphene field effect devices after their exposure to a series of short pulses of oxygen plasma. Our data from Raman spectroscopy, back-gated field-effect and magnetotransport measurements are presented. The intensity ratio between Raman 'D' and 'G' peaks, I-D/I-G (commonly used to characterize disorder in graphene), is observed to initially increase almost linearly with the number (N-e) of plasma-etching pulses, but later decreases at higher N-e values. We also discuss the implications of our data for extracting graphene crystalline domain sizes from I-D/I-G. At the highest N-e value measured, the '2D' peak is found to be nearly suppressed while the 'D' peak is still prominent. Electronic transport measurements in plasma-etched graphene show an up-shifting of the Dirac point, indicating hole doping. We also characterize mobility, quantum Hall states, weak localization and various scattering lengths in a moderately etched sample. Our findings are valuable for understanding the effects of plasma etching on graphene and the physics of disordered graphene through artificially generated defects.